
CHAPTER 12  DESIGN CONCEPTS  231

  A number of design methods, growing out of the work just noted, are being 

applied throughout the industry. Like the analysis methods presented in 

 Chapters 9 to 11, each software design method introduces unique heuristics 

and notation, as well as a somewhat parochial view of what characterizes de-

sign quality. Yet, all of these methods have a number of common characteristics: 

(1) a mechanism for the translation of the requirements model into a design 

representation, (2) a notation for representing functional components and their 

interfaces, (3) heuristics for refi nement and partitioning, and (4) guidelines for 

quality assessment. 

 Regardless of the design method that is used, you should apply a set of basic 

concepts to data, architectural, interface, and component-level design. These 

concepts are considered in the sections that follow. 

 What 
characteristics 

are common to all 
design methods? 

?

       12.3 DES IGN CONCEPTS 

  A set of fundamental software design concepts has evolved over the history of 

software engineering. Although the degree of interest in these concepts has var-

ied over the years, each has stood the test of time. Each provides the software 

designer with a foundation from which more sophisticated design methods can 

be applied. Each helps you defi ne criteria that can be used to partition software 

  Generic Task Set for Design 

     1.  Examine the information domain 
model and design appropriate data 
structures for data objects and their 

attributes.  
    2.  Using the analysis model, select an architectural 

style (pattern) that is appropriate for the software.  
    3.  Partition the analysis model into design subsystems 

and allocate these subsystems within the architecture: 
    Be certain that each subsystem is functionally 

cohesive.  
   Design subsystem interfaces.  
   Allocate analysis classes or functions to each 

subsystem.    
    4.  Create a set of design classes or components: 

    Translate analysis class description into a design 
class.  

   Check each design class against design criteria; 
consider inheritance issues.  

   Defi ne methods and messages associated with 
each design class.  

   Evaluate and select design patterns for a design 
class or a subsystem.  

   Review design classes and revise as required.    
    5.  Design any interface required with external systems 

or devices.  
    6.  Design the user interface: 

    Review results of task analysis.  
   Specify action sequence based on user scenarios.  
   Create behavioral model of the interface.  
   Defi ne interface objects, control mechanisms.  
   Review the interface design and revise as 

required.    
    7.  Conduct component-level design. 

    Specify all algorithms at a relatively low level of 
abstraction.  

   Refi ne the interface of each component.  
   Defi ne component-level data structures.  

     Review each component and correct all errors 
uncovered.    

    8.  Develop a deployment model.    

 TASK SET  

pre22126_ch12_224-251.indd   231pre22126_ch12_224-251.indd   231 13/12/13   6:12 PM13/12/13   6:12 PM



232 PART TWO  MODELING

into individual components, separate or data structure detail from a conceptual 

representation of the software, and establish uniform criteria that defi ne the 

technical quality of a software design. 

 M. A. Jackson [Jac75] once said: “The beginning of wisdom for a [software en-

gineer] is to recognize the difference between getting a program to work, and 

getting it right.” In the sections that follow, we present an overview of fundamen-

tal software design concepts that provide the necessary framework for “getting 

it right.” 

    12.3.1 Abstraction    

 When you consider a modular solution to any problem, many levels of abstrac-

tion can be posed. At the highest level of abstraction, a solution is stated in broad 

terms using the language of the problem environment. At lower levels of abstrac-

tion, a more detailed description of the solution is provided. Problem-oriented 

terminology is coupled with implementation-oriented terminology in an effort to 

state a solution. Finally, at the lowest level of abstraction, the solution is stated in 

a manner that can be directly implemented. 

  As different levels of abstraction are developed, you work to create both pro-

cedural and data abstractions. A  procedural abstraction  refers to a sequence of 

instructions that have a specifi c and limited function. The name of a procedural 

abstraction implies these functions, but specifi c details are suppressed. An ex-

ample of a procedural abstraction would be the word  open  for a door.  Open  im-

plies a long sequence of procedural steps (e.g., walk to the door, reach out and 

grasp knob, turn knob and pull door, step away from moving door, etc.).  5    

 A  data abstraction  is a named collection of data that describes a data object. 

In the context of the procedural abstraction  open,  we can defi ne a data abstrac-

tion called  door.  Like any data object, the data abstraction for  door  would encom-

pass a set of attributes that describe the door (e.g., door type, swing direction, 

opening mechanism, weight, dimensions). It follows that the procedural abstrac-

tion  open  would make use of information contained in the attributes of the data 

abstraction  door . 

     12.3.2 Architecture   

   Software architecture  alludes to “the overall structure of the software and the 

ways in which that structure provides conceptual integrity for a system” [Sha95a]. 

In its simplest form, architecture is the structure or organization of program 

components (modules), the manner in which these components interact, and the 

   As a designer, work 
hard to derive both 
procedural and data 
abstractions that serve 
the problem at hand. 
If they can serve 
an entire domain of 
problems, that’s even 
better. 

 WebRef 
 An in-depth discussion 
of software architecture 
can be found at 
  www.sei.cmu.
edu/ata/ata_init.
html  . 

  uote: 

 “Abstraction is one 
of the fundamental 
ways that we as 
humans cope with 
complexity.” 

 Grady Booch 

  5  It should be noted, however, that one set of operations can be replaced with another, as long as 

the function implied by the procedural abstraction remains the same. Therefore, the steps re-

quired to implement  open  would change dramatically if the door were automatic and attached 

to a sensor. 

pre22126_ch12_224-251.indd   232pre22126_ch12_224-251.indd   232 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  233

structure of data that are used by the components. In a broader sense, however, 

components can be generalized to represent major system elements and their 

interactions. 

 One goal of software design is to derive an architectural rendering of a sys-

tem. This rendering serves as a framework from which more detailed design 

activities are conducted. A set of architectural patterns enables a software engi-

neer to reuse design-level concepts.  

 Shaw and Garlan [Sha95a] describe a set of properties that should be specifi ed 

as part of an architectural design.  Structural properties  defi ne “the components 

of a system (e.g., modules, objects, fi lters) and the manner in which those compo-

nents are packaged and interact with one another.”  Extra-functional properties  

address  “ how the design architecture achieves requirements for performance, 

capacity, reliability, security, adaptability, and other system characteristics.  Fam-

ilies of related systems   “ draw upon repeatable patterns that are commonly en-

countered in the design of families of similar systems.” 

 Given the specifi cation of these properties, the architectural design can be 

represented using one or more of a number of different models [Gar95].  Struc-

tural models  represent architecture as an organized collection of program 

components.  Framework models  increase the level of design abstraction by 

 attempting to identify repeatable architectural design frameworks (patterns) 

that are encountered in similar types of applications.  Dynamic models  address 

the behavioral aspects of the program architecture, indicating how the struc-

ture or system confi guration may change as a function of external events.  Process 

 models  focus on the design of the business or technical process that the system 

must accommodate. Finally,  functional models  can be used to represent the func-

tional hierarchy of a system. 

 A number of different  architectural description languages  (ADLs) have been 

developed to represent these models [Sha95b]. Although many different ADLs 

have been proposed, the majority provide mechanisms for describing system 

components and the manner in which they are connected to one another. 

 You should note that there is some debate about the role of architecture in 

design. Some researchers argue that the derivation of software architecture 

should be separated from design and occurs between requirements engineering 

actions and more conventional design actions. Others believe that the derivation 

of architecture is an integral part of the design process. The manner in which 

software architecture is characterized and its role in design are discussed in 

Chapter 13.  

     12.3.3 Patterns   

 Brad Appleton defi nes a  design pattern  in the following manner: “A pattern is 

a named nugget of insight which conveys the essence of a proven solution to a 

recurring problem within a certain context amidst competing concerns” [App00]. 

  uote: 

 “A software 
architecture is the 
development work 
product that gives 
the highest return 
on investment with 
respect to quality, 
schedule, and 
cost.” 

 Len Bass et al. 

  uote: 

 “Each pattern 
describes a 
problem which 
occurs over and 
over again in our 
environment, and 
then describes the 
core of the solution 
to that problem, 
in such a way that 
you can use this 
solution a million 
times over, without 
ever doing it the 
same way twice.” 

 Christopher 
Alexander 

pre22126_ch12_224-251.indd   233pre22126_ch12_224-251.indd   233 13/12/13   6:12 PM13/12/13   6:12 PM



234 PART TWO  MODELING

Stated in another way, a design pattern describes a design structure that solves 

a particular design problem within a specifi c context and amid “forces” that may 

have an impact on the manner in which the pattern is applied and used. 

 The intent of each design pattern is to provide a description that enables a 

designer to determine (1) whether the pattern is applicable to the current work, 

(2) whether the pattern can be reused (hence, saving design time), and (3) whether 

the pattern can serve as a guide for developing a similar, but functionally or struc-

turally different pattern. Design patterns are discussed in detail in Chapter 16. 

     12.3.4 Separation of Concerns   

  Separation of concerns  is a design concept [Dij82] that suggests that any complex 

problem can be more easily handled if it is subdivided into pieces that can each 

be solved and/or optimized independently. A  concern  is a feature or behavior 

that is specifi ed as part of the requirements model for the software. By separat-

ing concerns into smaller, and therefore more manageable pieces, a problem 

takes less effort and time to solve. 

 It follows that the perceived complexity of two problems when they are com-

bined is often greater than the sum of the perceived complexity when each is 

taken separately. This leads to a divide-and-conquer strategy—it’s easier to solve 

a complex problem when you break it into manageable pieces. This has import-

ant implications with regard to software modularity. 

 Separation of concerns is manifested in other related design concepts: modu-

larity, aspects, functional independence, and refi nement. Each will be discussed 

in the subsections that follow. 

     12.3.5 Modularity   

  Modularity  is the most common manifestation of separation of concerns. Soft-

ware is divided into separately named and addressable components, sometimes 

called  modules,  that are integrated to satisfy problem requirements. 

 It has been stated that “modularity is the single attribute of software that al-

lows a program to be intellectually manageable” [Mye78]. Monolithic software 

(i.e., a large program composed of a single module) cannot be easily grasped by 

a software engineer. The number of control paths, span of reference, number 

of variables, and overall complexity would make understanding close to impos-

sible. In almost all instances, you should break the design into many modules, 

hoping to make understanding easier and, as a consequence, reduce the cost 

required to build the software.  

 Recalling our discussion of separation of concerns, it is possible to conclude 

that if you subdivide software indefi nitely the effort required to develop it will 

become negligibly small! Unfortunately, other forces come into play, causing 

this conclusion to be (sadly) invalid. Referring to  Figure 12.2 , the effort (cost) to 

develop an individual software module does decrease as the total number of 

pre22126_ch12_224-251.indd   234pre22126_ch12_224-251.indd   234 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  235

modules increases. Given the same set of requirements, more modules means 

smaller individual size. However, as the number of modules grows, the effort 

(cost) associated with integrating the modules also grows. These characteristics 

lead to a total cost or effort curve shown in the fi gure. There is a number,  M,  of 

modules that would result in minimum development cost, but we do not have the 

necessary sophistication to predict  M  with assurance. 

  The curves shown in  Figure 12.2  do provide useful qualitative guidance when 

modularity is considered. You should modularize, but care should be taken to 

stay in the vicinity of  M.  Undermodularity or overmodularity should be avoided. 

But how do you know the vicinity of  M ? How modular should you make software? 

The answers to these questions require an understanding of other design con-

cepts considered later in this chapter. 

 You modularize a design (and the resulting program) so that development 

can be more easily planned; software increments can be defi ned and delivered; 

changes can be more easily accommodated; testing and debugging can be con-

ducted more effi ciently, and long-term maintenance can be conducted without 

serious side effects. 

     12.3.6 Information Hiding   

 The concept of modularity leads you to a fundamental question: “How do I 

 decompose a software solution to obtain the best set of modules?” The principle 

of  information hiding  [Par72] suggests that modules be “characterized by  design 

decisions that (each) hides from all others.” In other words, modules should 

be specifi ed and designed so that information (algorithms and data) contained 

within a module is inaccessible to other modules that have no need for such 

information. 

  Hiding implies that effective modularity can be achieved by defi ning a set 

of independent modules that communicate with one another only that infor-

mation necessary to achieve software function. Abstraction helps to defi ne the 

 What is the 
right number 

of modules for a 
given system? 

?

   The intent of infor-
mation hiding is to 
hide the details of 
data structures and 
procedural processing 
behind a module 
interface. Knowledge 
of the details need not 
be known by users of 
the module. 

M

Region of minimum
cost

Number of modules
C

os
t o

r e
ffo

rt

Cost/module

Cost to integrate

Total software cost

  FIGURE 12.2

 Modularity 
and software 
cost   

pre22126_ch12_224-251.indd   235pre22126_ch12_224-251.indd   235 13/12/13   6:12 PM13/12/13   6:12 PM



236 PART TWO  MODELING

procedural (or informational) entities that make up the software. Hiding defi nes 

and enforces access constraints to both procedural detail within a module and 

any local data structure used by the module [Ros75]. 

 The use of information hiding as a design criterion for modular systems pro-

vides the greatest benefi ts when modifi cations are required during testing and 

later during software maintenance. Because most data and procedural detail are 

hidden from other parts of the software, inadvertent errors introduced during 

modifi cation are less likely to propagate to other locations within the software. 

     12.3.7 Functional Independence   

 The concept of functional independence is a direct outgrowth of separation of 

concerns, modularity, and the concepts of abstraction and information hiding. 

In landmark papers on software design Wirth [Wir71] and Parnas [Par72] allude 

to refi nement techniques that enhance module independence. Later work by 

 Stevens, Myers, and Constantine [Ste74] solidifi ed the concept. 

  Functional independence is achieved by developing modules with “ single- 

minded” function and an “aversion” to excessive interaction with other modules. 

Stated another way, you should design software so that each module addresses a 

specifi c subset of requirements and has a simple interface when viewed from 

other parts of the program structure. 

  It is fair to ask why independence is important. Software with effective mod-

ularity, that is, independent modules, is easier to develop because function can 

be compartmentalized and interfaces are simplifi ed (consider the ramifi cations 

when development is conducted by a team). Independent modules are easier to 

maintain (and test) because secondary effects caused by design or code modifi -

cation are limited, error propagation is reduced, and reusable modules are pos-

sible. To summarize, functional independence is a key to good design, and design 

is the key to software quality. 

 Independence is assessed using two qualitative criteria: cohesion and cou-

pling.  Cohesion  is an indication of the relative functional strength of a module. 

 Coupling  is an indication of the relative interdependence among modules. 

    Cohesion   is a natural extension of the information-hiding concept described 

in Section 12.3.6. A cohesive module performs a single task, requiring little inter-

action with other components in other parts of a program. Stated simply, a cohe-

sive module should (ideally) do just one thing. Although you should always strive 

for high cohesion (i.e., single-mindedness), it is often necessary and advisable 

to have a software component perform multiple functions. However, “schizo-

phrenic” components (modules that perform many unrelated functions) are to 

be avoided if a good design is to be achieved. 

 Coupling is an indication of interconnection among modules in a software 

structure. Coupling depends on the interface complexity between modules, the 

point at which entry or reference is made to a module, and what data pass across 

 Why 
should you 

strive to create 
independent 
modules? 

?

   Cohesion is a qualita-
tive indication of the 
degree to which a 
module focuses on just 
one thing. 

   Coupling is a qualita-
tive indication of the 
degree to which a 
module is connected to 
other modules and to 
the outside world. 

pre22126_ch12_224-251.indd   236pre22126_ch12_224-251.indd   236 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  237

the interface. In software design, you should strive for the lowest possible cou-

pling. Simple connectivity among modules results in software that is easier to 

understand and less prone to a “ripple effect” [Ste74], caused when errors occur 

at one location and propagate throughout a system. 

    12.3.8 Refi nement 

    Stepwise refi nement    is a top-down design strategy originally proposed by Niklaus 

Wirth [Wir71]. An application is developed by successively refi ning levels of 

 procedural detail. A hierarchy is developed by decomposing a macroscopic 

statement of function (a procedural abstraction) in a stepwise fashion until pro-

gramming language statements are reached. 

 Refi nement is actually a process of  elaboration.  You begin with a statement 

of function (or description of information) that is defi ned at a high level of ab-

straction. That is, the statement describes function or information conceptually 

but provides no indication of the internal workings of the function or the inter-

nal structure of the information. You then elaborate on the original statement, 

providing more and more detail as each successive refi nement (elaboration) 

occurs. 

 Abstraction and refi nement are complementary concepts. Abstraction en-

ables you to specify procedure and data internally but suppress the need for 

“outsiders” to have knowledge of low-level details. Refi nement helps you to re-

veal low-level details as design progresses. Both concepts allow you to create a 

complete design model as the design evolves. 

     12.3.9 Aspects    

 As requirements analysis occurs, a set of “concerns” is uncovered. These con-

cerns “include requirements, use cases, features, data structures, quality-

of- service issues, variants, intellectual property boundaries, collaborations, 

patterns and contracts” [AOS07]. Ideally, a requirements model can be organized 

in a way that allows you to isolate each concern (requirement) so that it can be 

considered independently. In practice, however, some of these concerns span 

the entire  system and cannot be easily compartmentalized. 

 As design begins, requirements are refi ned into a modular design representa-

tion. Consider two requirements,  A  and  B.  Requirement  A crosscuts  requirement 

 B  “if a software decomposition [refi nement] has been chosen in which  B  cannot 

be satisfi ed without taking  A  into account” [Ros04]. 

  For example, consider two requirements for the  www.safehomeassured.com  

 WebApp. Requirement  A  is described via the ACS-DCV use case discussed in 

Chapter 9. A design refi nement would focus on those modules that would enable 

a registered user to access video from cameras placed throughout a space. Re-

quirement  B  is a generic security requirement that states that  a registered user 

must be validated prior to using   www.safehomeassured.com.  This requirement 

   There is a tendency 
to move immediately 
to full detail, skipping 
refi nement steps. This 
leads to errors and 
omissions and makes 
the design much more 
diffi cult to review. 
Perform stepwise 
refi nement. 

   A crosscutting concern 
is some characteristic 
of the system that 
applies across many 
different requirements. 

  uote: 

 “It’s hard to read 
through a book 
on the principles 
of magic without 
glancing at the 
cover periodically 
to make sure it 
isn’t a book on 
software design.” 

 Bruce Tognazzini 

pre22126_ch12_224-251.indd   237pre22126_ch12_224-251.indd   237 13/12/13   6:12 PM13/12/13   6:12 PM



238 PART TWO  MODELING

is applicable for all functions that are available to registered  SafeHome  users. As 

design refi nement occurs,  A*  is a design representation for requirement  A  and 

 B*  is a design representation for requirement  B . Therefore,  A*  and  B*  are repre-

sentations of concerns, and  B* crosscuts A* . 

 An  aspect  is a representation of a crosscutting concern. Therefore, the design 

representation,  B* , of the requirement  a registered user must be validated prior 

to using   www.safehomeassured.com,  is an aspect of the  SafeHome  WebApp. It 

is important to identify aspects so that the design can properly accommodate 

them as refi nement and modularization occur. In an ideal context, an aspect is 

implemented as a separate module (component) rather than as software frag-

ments that are “scattered” or “tangled” throughout many components [Ban06a]. 

To accomplish this, the design architecture should support a mechanism for de-

fi ning an aspect—a module that enables the concern to be implemented across 

all other concerns that it crosscuts. 

      12.3.10 Refactoring   

 An important design activity suggested for many agile methods (Chapter 5),  re-

factoring  is a reorganization technique that simplifi es the design (or code) of a 

component without changing its function or behavior. Fowler [Fow00] defi nes re-

factoring in the following manner: “Refactoring is the process of changing a soft-

ware system in such a way that it does not alter the external behavior of the code 

[design] yet improves its internal structure.” 

  When software is refactored, the existing design is examined for redundancy, 

unused design elements, ineffi cient or unnecessary algorithms, poorly con-

structed or inappropriate data structures, or any other design failure that can 

be corrected to yield a better design. For example, a fi rst design iteration might 

yield a component that exhibits low cohesion (i.e., it performs three functions 

that have only limited relationship to one another). After careful consideration, 

you may decide that the component should be refactored into three separate 

components, each exhibiting high cohesion. The result will be software that is 

easier to integrate, easier to test, and easier to maintain. 

 Although the intent of refactoring is to modify the code in a manner that does 

not alter its external behavior, inadvertent side effects can and do occur. As a 

consequence, refactoring tools [Soa10] are used to analyze changes automati-

cally and to “generate a test suite suitable for detecting behavioral changes.” 

      12.3.11 Object-Oriented Design Concepts   

 The object-oriented (OO) paradigm is widely used in modern software engineer-

ing. Appendix 2 has been provided for those readers who may be unfamiliar with 

OO design concepts such as classes and objects, inheritance, messages, and 

polymorphism, among others. 

 WebRef 
 Excellent resources 
for refactoring can 
be found at   www 
. refactoring.com.   

 WebRef 
 A variety of refactoring 
patterns can be found 
at   http://c2.com/
cgi/wiki?
Refactoring
Patterns.   

pre22126_ch12_224-251.indd   238pre22126_ch12_224-251.indd   238 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  239

   12.3.12 Design Classes 

 The analysis model defi nes a set of analysis classes (Chapter 10). Each of these 

classes describes some element of the problem domain, focusing on aspects of 

the problem that are user visible. The level of abstraction of an analysis class is 

relatively high. 

  As the design model evolves, you will defi ne a set of  design classes  that re-

fi ne the analysis classes by providing design detail that will enable the classes 

to be implemented, and implement a software infrastructure that supports the 

business solution. Five different types of design classes, each representing a dif-

ferent layer of the design architecture, can be developed [Amb01].  User interface 

classes  defi ne all abstractions that are necessary for human-computer interac-

tion (HCI) and often implement the HCI in the context of a metaphor.  Business 

domain classes  identify the attributes and services (methods) that are required 

to implement some element of the business domain that was defi ned by one or 

 What types 
of classes 

does the designer 
create? 

?

  Design Concepts   Design Concepts 

      The scene:  Vinod’s cubicle, as 
 design modeling begins.  

     The players:  Vinod, Jamie, and Ed—members of the 
 SafeHome  software engineering team. Also, Shakira, a 
new member of the team.  

     The conversation:   

     [All four team members have just returned from a morn-
ing seminar entitled “Applying Basic Design Concepts,” 
offered by a local computer science professor.]  

     Vinod:  Did you get anything out of the seminar?  

     Ed:  Knew most of the stuff, but it’s not a bad idea to 
hear it again, I suppose.  

     Jamie:  When I was an undergrad CS major, I never 
really understood why information hiding was as im-
portant as they say it is.  

     Vinod:  Because . . . bottom line . . . it’s a technique for 
reducing error propagation in a program. Actually, func-
tional independence also accomplishes the same thing.  

     Shakira:  I wasn’t a CS grad, so a lot of the stuff the 
instructor mentioned is new to me. I can generate good 
code and fast. I don’t see why this stuff is so important.  

     Jamie:  I’ve seen your work, Shak, and you know 
what, you do a lot of this stuff naturally . . . that’s why 
your designs and code work.  

     Shakira (smiling):  Well, I always do try to partition 
the code, keep it focused on one thing, keep interfaces 
simple and constrained, reuse code whenever I can . . . 
that sort of thing.  

     Ed:  Modularity, functional independence, hiding, 
 patterns . . . see.  

     Jamie:  I still remember the very fi rst programming 
course I took . . . they taught us to refi ne the code 
iteratively.  

     Vinod:  Same thing can be applied to design, you 
know.  

     Jamie:  The only concepts I hadn’t heard of before 
were “aspects” and “refactoring.”  

     Shakira:  That’s used in Extreme Programming, I think 
she said.  

     Ed:  Yep. It’s not a whole lot different than refi nement, 
only you do it after the design or code is completed. 
Kind of an optimization pass through the software, if 
you ask me.  

     Jamie:  Let’s get back to  SafeHome  design. I think we 
should put these concepts on our review checklist as we 
develop the design model for  SafeHome .  

     Vinod:  I agree. But as important, let’s all commit to 
think about them as we develop the design.    

 SAFEHOME 

pre22126_ch12_224-251.indd   239pre22126_ch12_224-251.indd   239 13/12/13   6:12 PM13/12/13   6:12 PM



240 PART TWO  MODELING

more analysis classes.  Process classes  implement lower-level business abstrac-

tions required to fully manage the business domain classes.  Persistent classes  

represent data stores (e.g., a database) that will persist beyond the execution of 

the software.  System classes  implement software management and control func-

tions that enable the system to operate and communicate within its computing 

environment and with the outside world. 

 As the architecture forms, the level of abstraction is reduced as each analysis 

class (Chapter 10) is transformed into a design representation. That is, analysis 

classes represent data objects (and associated services that are applied to them) 

using the jargon of the business domain. Design classes present signifi cantly 

more technical detail as a guide for implementation. 

 Arlow and Neustadt [Arl02] suggest that each design class be reviewed to en-

sure that it is “well-formed.” They defi ne four characteristics of a well-formed 

design class: 

       Complete and suffi cient.  A design class should be the complete encapsu-

lation of all attributes and methods that can reasonably be expected 

(based on a knowledgeable interpretation of the class name) to exist for 

the class. For example, the class  Scene  defi ned for video-editing software 

is complete only if it contains all attributes and methods that can reason-

ably be associated with the creation of a video scene. Suffi ciency ensures 

that the design class contains only those methods that are suffi cient to 

achieve the intent of the class, no more and no less.  

     Primitiveness.  Methods associated with a design class should be focused 

on accomplishing one service for the class. Once the service has been 

implemented with a method, the class should not provide another way to 

accomplish the same thing. For example, the class  VideoClip  for video- 

editing software might have attributes    and  to indicate 

the start and end points of the clip (note that the raw video loaded into the 

system may be longer than the clip that is used). The methods,  setStart-

Point()  and  setEndPoint(),  provide the only means for establishing start 

and end points for the clip.  

     High cohesion.  A cohesive design class has a small, focused set of re-

sponsibilities and single-mindedly applies attributes and methods to 

implement those responsibilities. For example, the class  VideoClip  might 

contain a set of methods for editing the video clip. As long as each method 

focuses solely on attributes associated with the video clip, cohesion is 

maintained.  

     Low coupling.  Within the design model, it is necessary for design classes 

to collaborate with one another. However, collaboration should be kept to 

an acceptable minimum. If a design model is highly coupled (all design 

classes collaborate with all other design classes), the system is diffi cult to 

 What is 
a “well-

formed” design 
class? 

?

pre22126_ch12_224-251.indd   240pre22126_ch12_224-251.indd   240 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  241

implement, to test, and to maintain over time. In general, design classes 

within a subsystem should have only limited knowledge of other classes. 

This restriction, called the  Law of Demeter  [Lie03], suggests that a method 

should only send messages to methods in neighboring classes.  6        

    6  A less formal way of stating the Law of Demeter is “Each unit should only talk to its friends; 

Don’t talk to strangers.” 

  Refi ning an Analysis Class into a Design Class   Refi ning an Analysis Class into a Design Class 

      The scene:  Ed’s cubicle, as design 
modeling begins.  

     The players:  Vinod and Ed—members of the 
  SafeHome  software engineering team.  

     The conversation:   

     [Ed is working on the  FloorPlan  class (see sidebar 
discussion in Section 10.3 and  Figure 10.2 ) and has 
refi ned it for the design model.]  

     Ed:  So you remember the  FloorPlan  class, right? It’s 
used as part of the surveillance and home management 
functions.  

     Vinod (nodding):  Yeah, I seem to recall that we 
used it as part of our CRC discussions for home 
management.  

     Ed:  We did. Anyway, I’m refi ning it for design. Want 
to show how we’ll actually implement the  FloorPlan  
class. My idea is to implement it as a set of linked lists 
[a specifi c data structure]. So . . . I had to refi ne the 
analysis class  FloorPlan  ( Figure 10.2 ) and actually, 
sort of simplify it.  

     Vinod:  The analysis class showed only things in the 
problem domain, well, actually on the computer screen, 
that were visible to the end user, right?  

     Ed:  Yep, but for the  FloorPlan  design class, I’ve got 
to add some things that are implementation specifi c. I 
needed to show that  FloorPlan  is an aggregation of 
segments—hence the  Segment  class—and that the 
 Segment  class is composed of lists for wall segments, 
windows, doors, and so on. The class  Camera  collab-
orates with  FloorPlan,  and obviously, there can be 
many cameras in the fl oor plan.  

     Vinod:  Phew, let’s see a picture of this new 
  FloorPlan  design class.  

     [Ed shows Vinod the drawing shown in  Figure 12.3 .]  

     Vinod:  Okay, I see what you’re trying to do. This 
allows you to modify the fl oor plan easily because new 
items can be added to or deleted from the list—the 
 aggregation—without any problems.  

     Ed (nodding):  Yeah, I think it’ll work.  

     Vinod:  So do I.    

 SAFEHOME 

   12.3.13 Dependency Inversion 

 The structure of many older software architectures is hierarchical. At the top of 

the architecture, “control” components rely on lower-level “worker” components 

to perform various cohesive tasks. Consider a simple program with three com-

ponents. The intent of the program is to read keyboard strokes and then print 

the result to a printer. A control module,  C , coordinates two other modules—a 

keystroke reader module,  R , and a module that writes to a printer,  W . 

  The design of the program is coupled because  C  is highly dependent on  R  

and  W . To remove the level of dependence that exists, the “worker” modules  R  

and  W  should be invoked from the control module  S  using abstractions. In 

   What is the 
“dependency 

inversion 
principle”? 

?

pre22126_ch12_224-251.indd   241pre22126_ch12_224-251.indd   241 13/12/13   6:12 PM13/12/13   6:12 PM



242 PART TWO  MODELING

object-oriented software engineering, abstractions are implemented as abstract 

classes,  R*  and  W*.  These abstract classes could then be used to invoke worker 

classes that perform any read and write function. Therefore a  copy  class,  C,  

 invokes abstract classes,  R*  and  W*,  and the abstract class points to the appro-

priate worker-class (e.g., the R* class might point to a  read()  operation within a 

 keyboard  class in one context and a  read()  operation within a  sensor  class in 

another. This approach reduces coupling and improves the testability of a 

design. 

 The example discussed in the preceding paragraph can be generalized with 

the  dependency inversion principle  [Obj10], which states:  High-level modules 

(classes) should not depend [directly] upon low-level modules. Both should de-

pend on abstractions. Abstractions should not depend on details. Details should 

depend on abstractions.  

   12.3.14 Design for Test 

 There is an ongoing chicken-and-egg debate about whether software design or 

test case design should come fi rst. Rebecca Wirfs-Brock [Wir09] writes: 

  Advocates of test-driven development (TDD) write tests before implementing any 

other code. They take to heart Tom Peters’ credo, “Test fast, fail fast, adjust fast.” Test-

ing guides their design as they implement in short, rapid-fi re “write test code—fail 

the test—write enough code to pass—then pass the test” cycles.   

FloorPlan

addCamera( ) 
addWall( ) 
addWindow( ) 
deleteSegment( ) 
draw( )  

type 
outsideDimensions  

WallSegment

Segment

startCoordinate 
endCoordinate 
getType( ) 
draw( )

Window

Camera
type 
id 
fieldView 
panAngle
zoomSetting 

 

1 *

1
*

  FIGURE 12.3

 Design class 
for FloorPlan 
and composite 
aggregation 
for the class 
(see sidebar 
discussion)   

  uote: 

 “Test fast, fail fast, 
adjust fast.” 

 Tom Peters 

pre22126_ch12_224-251.indd   242pre22126_ch12_224-251.indd   242 13/12/13   6:12 PM13/12/13   6:12 PM



CHAPTER 12  DESIGN CONCEPTS  243

 But if design comes fi rst, then the design (and code) must be developed with 

 seams —locations in the detailed design where you can “insert test code that 

probes the state of your running software” and/or “isolate code under test from 

its production environment so that you can exercise it in a controlled testing 

context” [Wir09]. 

 Sometimes referred to as “test hooks,” seams must be consciously designed 

at the component level. To accomplish this, a designer must give thought to the 

tests that will be conducted to exercise the component. As Wirfs-Brock states: “In 

short, you need to provide appropriate test affordances—factoring your design in 

a way that lets test code interrogate and control the running system.” 

      12.4 THE DES IGN MODEL 

  The design model can be viewed in two different dimensions as illustrated in 

 Figure 12.4 . The  process dimension  indicates the evolution of the design model 

as design tasks are executed as part of the software process. The  abstraction 

dimension  represents the level of detail as each element of the analysis model 

is transformed into a design equivalent and then refi ned iteratively. Referring to 

the fi gure, the dashed line indicates the boundary between the analysis and de-

sign models. In some cases, a clear distinction between the analysis and design 

Process dimension

A
b
st

ra
ct

io
n
 d

im
en

si
o
n

Architecture 
elements

Interface 
elements

Component-level 
elements

Deployment-level 
elements

Low

High

Class diagrams 
Analysis packages 
CRC models 
Collaboration 
   diagrams 
Data flow diagrams 
Control-flow diagrams 
Processing narratives

Use cases - text 
Use-case diagrams 
Activity diagrams 
Swimlane diagrams 
Collaboration 
   diagrams
State diagrams
Sequence diagrams

Design class 
   realizations
Subsystems 
Collaboration 
   diagrams 

Refinements to:

Deployment diagrams

Class diagrams
Analysis packages
CRC models
Collaboration diagrams
Data flow diagrams
Control-flow diagrams
Processing narratives
State diagrams
Sequence diagrams

Component diagrams
Design classes 
Activity diagrams 
Sequence diagrams 

Refinements to:
Component diagrams
Design classes 
Activity diagrams 
Sequence diagrams 

Design class realizations 
Subsystems 
Collaboration diagrams 
Component diagrams 
Design classes 
Activity diagrams 
Sequence diagrams

Analysis model

Design model

Requirements:
  Constraints
  Interoperability
  Targets and
      configuration

Technical interface
 design  
Navigation design 
GUI design  

   Design class 
      realizations 
   Subsystems 
   Collaboration 
      diagrams 

  FIGURE 12.4  Dimensions of the design model   

pre22126_ch12_224-251.indd   243pre22126_ch12_224-251.indd   243 13/12/13   6:12 PM13/12/13   6:12 PM




